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Design of force fields from data at finite temperature

J. M. Deutsch and Tanya Kurosky
University of California, Santa Cruz, California 95064

~Received 18 April 1997; revised manuscript received 20 June 1997!

We investigate the problem of how to obtain the force field between atoms of an experimentally determined
structure. We show how this problem can be efficiently solved, even at finite temperature, where the position
of the atoms differs substantially from the ground state. We apply our method to systems modeling proteins
and demonstrate that the correct potentials can be recovered even in the presence of thermal noise.
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I. INTRODUCTION

In many cases it is possible to determine, quite precis
the structure of a physical system. X-ray crystallography
made it possible to determine structures of a myriad of
ferent compounds. Among the most complicated of these
protein crystals, where thousands of atoms appear in the
cell. The structures of many hundreds of proteins have b
determined in this way. The forces between these atoms
of great importance in predicting the interaction of prote
with other molecules and also in enabling one to do prot
folding numerically. Therefore there has been a great dea
effort to determine the forces between submolecules in th
systems.

One approach has been to determine the forces fromab
initio quantum calculations of small molecules and ad
tional data obtained from experiments on small molecu
giving, for example, resonant frequencies of vibration of c
tain bonds. This has led to a number of force fields. Fo
review of these, see Ref.@1#. These have been used exte
sively in computational studies of biological molecules. Su
potentials involve many hundreds of parameters, all of wh
are quite difficult to determine. These force fields are s
evolving.

Another approach which is the subject of this paper
been to try to extract the values of parameters in the fo
field from the experimentally determined structures. This
proach has some advantages to it over a directab initio ap-
proach. First, theab initio approach has assumed, for th
most part, two-body potentials and has ignored higher-b
terms. At a microscopic level these other terms should
important. One would like to develop effective potentia
that mimic the higher-body terms as well as possible.
extracting potentials from experimental structures and fitt
them to an effective two-body form, an optimum two-bo
force field which includes higher-body effects can then
principle be calculated.

Second, theab initio approach is intended to describe t
interactions of all the atoms of a protein. One would like
believe, however, that such detail is not necessary in orde
predict the overall structure@2#. Coarse grained force field
that consider interactions only between amino acids can
computed from the experimental structures@3–9#. This may
be too crude an approximation for many applications but
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the advantage that it greatly reduces the complexity o
protein folding simulation.

One of the most practical approaches along these lines
been an attempt to derive the energy of interaction of en
amino acids from their pairing frequency@4#. To do so, one
treats the protein as a dilute gas of amino acids, which gi
a simple analytical relation between the pairing frequen
and potentials. Despite the approximate nature of such
approach, this has led to some success in predicting pro
structure@10–12#. There have been some recent criticisms
the approximations used@6# along with improvements to the
method@7#.

The purpose of this work is as follows. We devise and t
a method for determining parameters of a force field fro
experimental data on molecular structures. This method fi
the set of parameters that will be most likely to fold th
molecules into their observed structures. Our method is g
eral enough that it can determine the parameters of a fo
field of arbitrary complexity, such as theab initio off-lattice
approaches mentioned above. This method works corre
even at finite temperature. This is important from a practi
standpoint since the positions of the atoms are only defi
to within a few angstroms. The problem at finite temperat
is very different than at zero temperature and we will see t
it is a much harder problem. Our solution is very efficie
and appears on test cases to work remarkably well.

The method used has two features that make it very p
erful. First it is an iterative scheme at finite temperature. T
basic idea is to start with the wrong values of parameters
perform a simulation which gives parameters closer to
true ones. Then again perform a simulation, but this ti
with the new estimated parameters. This is done repeat
until satisfactory convergence is obtained. Second,
method introduces the idea of clamping. The simulations
initially performed with a clamping potential applied. This
an artificial constraint that has been added to the system
prevent it from straying too far from the known experimen
structure. Without this constraint the simulation would
hopelessly slow for a real system such as a protein, bec
folding a protein is an extremely slow process. However, t
clamping constraint does not allow the protein to explo
other metastable states, meaning that the dynamics wil
exponentially faster than the folding problem. As the para
eters converge the clamping potential is diminished, a
therefore has no effect on the final results.
4553 © 1997 The American Physical Society
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A caveat that we mention is that enough experimen
data must be available in order to determine the correct
ues of parameters. Even at finite temperature, we will
that good results can be obtained for quite small data se
then seems feasible that our method could be used to d
mine the force field of real proteins.

II. THE PROBLEM

A. Terminology

Consider a system ofN atoms with coordinatesG[$r i%,
i 51, . . . ,N. The atoms are of different typess, and the
chemical sequence can be denotedS5$si%, i 51, . . . ,N. The
Hamiltonian for the system depends onm parameters
P5$pi%, i 51, . . . ,m, for example, the charge and van d
Waals radius. We denote the Hamiltonian asH(G,S,P).

The problem is then as follows. Given experimental d
on Nmol molecules, at finite temperature, with sequencesSi

and configurationsG i* , what value of parametersP will
maximize the probability that these molecules have th
experimentally determined structures?

Very often the parameters can be redefined in such a
that the Hamiltonian depends on them linearly,

H~G,S,P!5(
i

m

pihi~G,S!. ~1!

For example, the van der Waals repulsion between two
oms separated by a distancer can be written asK(a/r )12,
whereK anda are parameters. Both of these can be absor
into a single parameterp5Ka12.

B. Zero temperature

If the molecules are in their ground states, then the fo
on any atom must be zero. Thus minimizing the sum of
squares of the forces on all atoms with respect to the par
etersP should give a solution to this problem. Indeed, n
merical tests using the model presented in Sec. IV confi
that this method works very well and precisely recovers
values of all parameters, up to an overall multiplicative co
stant. However, at any finite temperature this method f
quite dramatically. In this case the sum of the squares o
forces can never be chosen to be truly zero. As a result
minimum is obtained by setting many parameters, such
the charge and van der Waals radius, equal to zero. At fi
temperature, it is crucial to consider entropic effects an
more fundamental approach to this problem is required.
will see in the next section that at finite temperatures
optimum estimate of parameters can be obtained that
cludes the overall multiplicative constant.

For lattice models, the above approach will also not wo
even at zero temperature, since the concept of a force is m
difficult to define. For a dense system, it is impossible
make small displacements, as atoms in the middle of
molecule are already surrounded by occupied sites. T
other methods must be employed.

C. The method

The formalism used previously to analyze the problem
sequence design also applies here@13#. We want to minimize
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DF[ (
i 51

Nmol

H~G* i ,Si ,P!2F~Si ,P! ~2!

with respect to the parametersP. DF is the difference be-
tween the energies of the molecules in their experiment
determined conformations, and their free energies

F~Si ,P!52T ln(
G

exp@2bH~G,Si ,P!#. ~3!

The parameters thus found are optimal in the sense tha
molecules will be more likely to be in their experimental
determined structuresG i when they interact with these pa
rameters than with any other choice of parameters. T
present work attempts to find the solution to a well defin
problem. Other recent work@9# chooses a more arbitrar
criterion for optimizing the potential, and will not work a
finite temperature.

In practice however, the calculation of the free energy i
formidable task, thus we must devise an efficient method
minimize DF.

We start by observing that if we have an approxima
solution P0 , the free energy can then be expanded arou
that point. For notational simplicity, we will omit the sum
mation over different molecules, as a single molecule can
redefined to be composed out ofNmol molecules. Corre-
sponding to the parametersP0 , we introduce the Hamil-
tonianH0(G)[H(G,S,P0).

DF'H~G* !2F02^H2H0&0

1
1

2
b@^~H2H0!2&02^~H2H0!&0

2#. ~4!

The averageŝ•••&0 are performed with respect toH0 . Since
F0 is independent ofP, the minimum of this expression i
much easier to determine than that of the exact one bec
it involves calculating averages, which is much easier th
calculating free energies. The averaging can be done num
cally, say by molecular dynamics or Monte Carlo simulatio
A further simplification can be made for the class of Ham
tonians that are writable in the form of Eq.~1!. In this case
DF is bilinear in the parametersP. That is, it can be written
as

DF5(
i

m

Nipi1
1

2 (
i , j 51

m

piM i j pj1const, ~5!

whereNi and Mi j are constants that are determined by c
culating the average above. Because of this, the minim
values of the parameters can be calculated by solving
matrix equationMp52N.

If P0 is not too far from the true minimum, this procedu
gives a better approximation to the minimum ofDF thanP0 .
We can redefineP0 to be about this new point and the
repeat this procedure iteratively, until the values of para
eters have converged. IfP0 is too far, the procedure will no
converge, however, we have seen that the radius of con
gence is greatly increased by taking fractional steps in
direction ofP. If we regardP as a vector of parameters, the
we can take our new set of parameters to beeP1(12e)P0 .
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Very interesting recent work@8# using an iterative proce
dure should give similar results at zero temperature. We
not expect other recent work@9# to give similar results even
at zero temperature.

D. Clamping

Calculating the above averages is still quite difficult b
cause it involves folding entire molecules with paramet
P0 , to obtain their statistical properties in equilibrium. Ev
if we start the molecule off in the experimentally determin
conformationG* , it will not stay close to there if parameter
P0 are quite different than their true values. Folding re
proteins is still impossible with current computers, so at fi
sight, the above method would appear impractical. Howe
we can circumvent this problem by adding aclampingterm
to H0 .

Folding proteins is difficult because of the many loc
minima in the energy landscape, however, if we add
clamping term to the Hamiltonian,

HC5C(
i

N

ur i2r i* u2, ~6!

this localizes the molecule to configurations near the exp
mentally determined valuesG* . Therefore equilibrating mol-
ecules is many orders of magnitude faster than without
term, even if the value ofC is rather small, allowing the
atoms to explore their local environments.

So in Eq.~4!, we addHC to H0 :

H0~G!5H~G0 ,S,P!1HC . ~7!

As long asC is small, the second order expansion sho
still be a useful approximation.

Once approximate values of parameters have been d
mined with the clamping potential on, it can be gradua
turned off. With the correct parameters forP0 , a clamping
potential is not necessary because the initial configuration
start the molecule in,G* , is already correctly folded.

This trick works because, unlike the problem of prote
folding, we know the tertiary structure of the molecule a
can use that fact to speed up the averaging.

III. APPLICATION TO LATTICE SYSTEMS

We apply our method to lattice systems, such as the
model@14#. Consider a two dimensional square lattice with
self-avoiding chain interacting with its nearest neighbo
We assume that there are two species of monomerss that
define the sequence of the chain, of typess51 ands52.

H~$s i%,$r i%!5
1

2 (
i , j

N

Vs is j
D~r i2r j ! . ~8!

D(r ) is 1 if r is nearest neighbor displacement, and z
otherwise. In the HP model@14#, the interaction between
type i and j , Vi j , is especially simple:V115V1250 and
V22521. For a given sequence, the ground state may
degenerate. ForN514, there are 386 sequences with uniq
ground states, so-called ‘‘good sequences.’’ We rando
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chose 37 of these ground state sequences as input to
algorithm which gave predictions for theVi j ’s @15#.

We choseH0 to be zero if there was one or more neare
neighbor contact, and otherwise, it was infinite. This confin
all our averaging to conformations that have a chance
being a ground state. A conformation with no contacts c
not be in a unique ground state. We did not use Monte Ca
simulation, but instead calculated the averages using e
enumeration. This is quite efficient as the averages in Eq.~4!
can be written in terms of second and fourth order correlat
functions, Ci j [^D(r i2r j )& and Di jkl [^D(r i2r j )&^D(r k
2r l)&. These correlation functions are only computed on
and so the design code runs very quickly, over an order
few seconds on an Intel 586 machine.

Minimizing Eq. ~4! gives the values@15# V1150.057,
V1250.14, andV22521. This might seem to be quite far of
from the original values, however, refolding the 37 cha
using these new values gives precisely the same gro
states for all the chains. In other words this potential giv
the same ground state as the original.

For a commonly used variant@16,17# of the Dill and Lau
model, there are 1619 good sequences. In this case, the
ues found are@15# V11520.89,V1250.28, andV22521.
Again, this correctly refolds all 37 conformations consider
to the correct ground states.

In both cases, the method reproduces the correct gro
states immediately, so that an iterative method need no
considered. We now turn to a continuous system at fin
temperature.

IV. APPLICATION TO AN OFF-LATTICE SYSTEM

We now consider an off-lattice system containing mu
of the essential physics of a real protein. We consider a s

FIG. 1. The computed values of the parameters as a functio
the number of iterations for the off-lattice model considered in
text. The spring constantk is denoted by the open triangles, th
equilibrium spring lengthr 0 by solid squares, the chargeQ by solid
hexagons, and the van der Waals radiusa by open squares
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4556 56J. M. DEUTSCH AND TANYA KUROSKY
tem of atoms connected by springs with an equilibriu
length r 0 , and spring coefficientk. We also say that there
are two types of atoms with chargeqi of either Q or 2Q.
Finally we include a van der Waals repulsion (a/r )12. The
Hamiltonian is then

H5(
i

N
k

2
~r i2r 0!21(

i , j

N
qiqj

ur i2r j u
1S a

ur i2r j u
D 12

. ~9!

which depends on the parametersk, r 0 , Q, and a. This
Hamiltonian can be rewritten in the form of Eq.~1!.

To test our method, we first made a database of 12 8-
structures, with 12 different sequences of theqi . We chose
some fixed values for the parameters,k51, r 054, Q51, and
a51. We cooled the atoms using simulated annealing do
to a temperature where they had collapsed to well defi
structures,b520. Then we fed these structures into our p
gram, which uses a Monte Carlo calculation to estimate
averages in Eq.~4!. We applied a moderate clamping pote
tial with C52.5 for five iterations and then turned it off an
continued to iterate four more times. The program is s
posed to determine the parametersk, r 0 , Q, anda from only
the database of these 12 structures. The results are disp
l.
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in Fig. 1. The results took about five minutes on an Intel 5
microprocessor. The computed parameters are within 12%
the real values.

V. CONCLUSIONS

We have presented a relatively simple method for de
mining forces between atoms from their structure at fin
temperature. We have applied this to several model syste
on lattice and off lattice, and have found that it gives acc
rate results very efficiently. Our approach expandsDF intro-
duced earlier@13# to second order about some approxima
parameters.DF is again minimized, and the procedure
repeated iteratively until satisfactory convergence is
tained. Because of the efficiency of this method, it appe
computationally feasible to us to apply our method to r
protein data bases. This is currently under investigation.
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